
Cluster structure near the percolation threshold

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 3829

(http://iopscience.iop.org/0305-4470/15/12/032)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 15:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 3829-3844. Printed in Great Britain 

Cluster structure near the percolation threshold 

Antonio Conigliot 
Center for Polymer Studies$ and Department of Physics, Boston University, Boston, 
Massachusetts 02215, USA 

Received 11 June 1982 

Abstract. We derive exact relations that allow us to describe unambiguously and quantita- 
tively the structure of clusters near the percolation threshold p c .  In particular, we prove 
the relations p(dp,,/dp) = ( A a , )  where p is the bond density, p , ,  is the pair connectedness 
function and (Az , )  is the average number of cutting bonds between i and j .  These bonds 
have the property such that if one is cut, i and j are no longer connected. From this 
relation it follows that the average number of cutting bonds between two points separated 
by a distance of the order of the connectedness length [, diverges as Ip-pCI-’. The 
remaining (multiply connected) bonds in the percolating backbone, which lump together 
in ‘blobs’, diverge with a dimensionality-dependent exponent. In the light of these results, 
the backbone of the infinite cluster near p c  is better described by a ‘nodes, links and blobs’ 
picture, rather than the simplified Skal-Shklovskii-de Gennes ‘nodes and links’ model. 

We also show that in the cell renormalisation group of Reynolds er al the ‘thermal’ 
eigenvalue is simply related to the average number of cutting bonds in the spanning cluster. 
Finally we discuss a percolation model in which the ’blobs’ can be controlled by varying 
a parameter, and study the influence on the critical exponents. 

1. Introduction 

Percolation theory has received much attention in the last decade (see e.g. the recent 
reviews Stauffer (1979), Essam (1980)). Nevertheless a complete knowledge of the 
cluster structure is still missing. This is crucial in understanding much of the properties 
of random systems, such as dilute ferromagnets, random resistor networks and gels. 
Here we will consider bond percolation. In particular, three distinct pictures have 
been proposed. 

(a) ‘Nodes and links’ picture. Skal and Shklovskii (1975) and independently de 
Gennes (1976) proposed the well known ‘nodes and links’ model for the backbone 
of the infinite cluster above the percolation threshold p c ,  obtained by eliminating 
dangling ends. In this picture the backbone is a superlattice made of nodes separated 
by a distance of the order of the connectedness length 5, connected by macrobonds 
(figure l (a ) ) .  The macrobonds are made of L links where L - Ip -pel-', p is the 
density of bonds, and it was argued that 5 = 1. Just below p c  the backbone of the 
very large cluster, with linear dimension 5, the incipient infinite cluster (IIC), is also 
believed to have the same structure as the macrobonds (figure l (b) ) .  This model has 
the nice property of being very simple to handle, but it does not accurately represent 
cluster structure for low dimensionality d. In fact, it predicts the same crossover 
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Figure 1. Skal-Shklovskii-de Gennes ‘nodes and links’ model of the backbone of the 
infinite cluster above pc (a) and the incipient infinite cluster below p c  ( b ) .  

exponent d I  = dH = l for the dilute Ising and Heisenberg systems at the percolation 
threshold, contrary to experimental results (Birgeneau et a1 1980, Cowley et a1 
1980a, b). It also predicts the conductivity exponent t = (d  - 2 )  + ~ I I  and the backbone 
order parameter exponents p’ = vd - lB with lR = lB = I, which is inconsistent with 
the available data which require lR # lB for low dimensionality. 

(b) ‘No4es, links, and blobs’ picture. Stanley (1977) made the observation that in 
every configuration the bonds in the backbone of the IIC below p c  can be partitioned 
in two categories: the links (also called cutting bonds), such that if one is cut, the 
cluster breaks into two parts, and the remaining multiply connected bonds which lump 
together in ‘blobs’. Recently this picture was put on a more quantitative basis through 
the study of the dilute Heisenberg and Ising systems near p c .  It was pointed out that 
each type of bond plays an important role (Coniglio 1981a) and it was also suggested 
(Coniglio 1981b) that the infinite cluster above p c  can be described as nodes connected 
by links and blobs. 

(c) ‘Sierpinski gasket backbone’ model. Gefen et a1 (1981) have introduced an 
alternative model that represents the opposite extreme of the nodes and links picture. 
This is a fractal model for the backbone of the infinite cluster at pc .  It has a self-similar 
structure, and only multiply connected bonds are present. Thus in the ‘nodes and 
links’ model the blobs are neglected, while in the Sierpinski gasket model the links 
are neglected. A great advantage of this model is that, like some hierarchical models 
in thermal phase transitions (Berker and Ostlund 1979), it can be solved exactly. It 
also gives good results in low dimensions for the backbone and the conductivity 
exponents but it fails to predict the correct value for the dilute Ising crossover exponent 
dI for any d .  

In this paper we derive exact relations which allow us to describe unambiguously 
and quantitatively the structure of clusters near pc .  In particular, we show that both 
links and blobs are important, thus supporting picture (b). More quantitatively, we 
find that the number of links L between two points separated by a distance of the 
order 6 diverges as L - Ip -pel-' as p + p C  for any lattice and dimensionality d. This 
result has been confirmed on the square lattice by Pike and Stanley (1981) using Monte 
Carlo methods. 

Using this result, and the numerical information (see table 1) that the number of 
backbone bonds between two points separated by a distance of the order of 6 diverges 
with an exponent lB > 1 for 2 G d < 6 ,  it follows that the number of bonds in the blobs 
also diverges with the same exponent CB. Therefore below p c  the backbone of the 
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Table 1. 

6 (f) d 1 2  3 4 5 
P (a) 0 5/36 0.45 0.58 0.76 1 
P‘ (b) 0 0.5-0.6 0.8-1.0 1 .o-1.2 2 

i m l n  1 1.49,+0.01 1 
[SAW (‘’ 1 1.73 1.32 1.21 1.15 1 
[ B =  V d - P ’  2.16-2.06 1.84- 1.64 1.8- 1.6 1 

1 413 0.88 0.7 0.6 112 (a) 

(R (‘:*) 1 1.43+0.02 1.12+0.02 1.05+0.02 1.02+0.02 1 

(ai From best estimates of Stauffer (1979) and Stauffer et ai (1982). 
(b’ Kirkpatrick (1978), and for d = 2 also, Shlifer et ai (1979). 
(’) Fisch and Harris (1978). 
(dl Pike and Stanley (1981). 

This exponent has been evaluated via [sAw= v/vpXw where vgAW = 3/(2+dF) is the 
Flory formula for the SAW exponent extended by Kremer (1981) to the percolating cluster 
with fractal dimensionality d F =  d - p / v .  
( f )  Exact results on the Cayley tree. 

IIC on a length scale of the order of 6 looks like a quasi-one-dimensional chain made 
of links and very large blobs. 

On the other hand, for d > 1 we argue that the number of cutting bonds on the 
backbone of the IIC, between two points separated by a distance much smaller than 
6, tends to zero as Ip - p J a  where a is the ‘specific heat’ exponent, which in percolation 
is known to be negative. Therefore for p = p c ,  or equivalently for length scales much 
smaller than 6 according to our non-rigorous argument, there are no cutting bonds 
between points on the backbone of the IIC. However we show that internal links are 
still present (figure 2 ( c ) ) .  

The remainder of this paper is organised in the following way. In § 2 we give the 
basic relations which support the ‘nodes, links and blobs’ picture below pc .  In § 3 we 
give relations which suggest that the blobs are made of quasi-one-dimensional chains 
of links and blobs with a self-similar structure (figure 2(c)). In D 4 we show that for 

P ’ P r  

( ( 7 1  

Figure 2. ‘Nodes, links, and blobs’ model. A modified version of the ‘nodes and links’ 
picture of the backbone of the infinite cluster above pc. ( a )  Nodes separated by a distance 
6 are connected by links and blobs. Note that a node may be a blob. ( b )  Backbone of 
the incipient infinite cluster below pc made of links and blobs. (c) Structure of a blob: 
points separated by a distance b, such that a << b =s 6 where a is the lattice space, are 
connected by chains made of links and ‘blobs’ in a self-similar structure. 
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simplicity one can substitute the backbone of the IIC with an effective one-dimensional 
chain, like in the nodes and links model, provided that its length depends on the 
quantity under consideration, such as resistivity, shortest path, self-avoiding walk on 
a dilute lattice, size of the backbone. We show that all these lengths satisfy a hierarchy 
of inequalities. Different exponents are associated with the divergence of these lengths, 
which are 21. An analysis of the available numerical data shows that these exponents 
take their maximum value at d = 2 where the blobs are most important and tend to 
1 monotonically as d + 6, where the influence of the blobs vanishes. 

In 9 5 ,  the previous analysis on the cluster structure is extended to p > p c  and the 
nodes, links and blobs picture is confirmed. 

In 9 6,  we show in the context of the cell renormalisation group theory (Reynolds 
et a1 1978, 1980) that the cutting bonds play a crucial role in driving the percolation 
transition. We also show that the ‘thermal’ eigenvalue is simply related to the average 
number of cutting bonds in the spanning cluster. 

In § 7 we discuss the influence of the blobs on the critical exponents. To do so 
we consider a variation of the percolation model which has been introduced in the 
context of polymer gelation and vulcanisation (Coniglio and Daoud 1979, Ord and 
Whittington 1982). In this model, besides the usual unrestricted bond, another bond 
is introduced with restricted valence 2. This has the property of forming chains and 
therefore produces the effect of reducing the size of the ‘blobs’. This can be done 
until the ‘blobs’ disappear and crossover to self-avoiding walk behaviour is observed. 

The conclusions are given in 9 8. The proofs of the new relations presented in 
this paper are given in the appendix. The essential results given here have been 
reported briefly in previous publications (Coniglio 198 l a ,  b). 

2. Cluster structure below p e  

Consider bond percolation on a regular lattice in d dimensions. A basic quantity is 
the pair connectedness function pii, defined as the probability that i and j belong to 
the same cluster. For p s p c  the connectedness length 6 can be defined as (Essam 1980) 

where rii is the geometric (‘crow-flying’) distance between i and j .  The mean cluster 
size S is given by 

s = 1 pij. 
i 

These quantities diverge as p + p c  as 5 - E -” and S - E -’ where E = Ip 
In order to obtain more information about the cluster structure, 

- P c l l P c .  
we distinguish 

several types of bonds according to the role they play in connectivity. For example, 
the backbone bonds between i and j are the bonds that belong to at least one 
self-avoiding walk between i and j .  The remaining bonds in the cluster are dangling 
bonds. The backbone bonds between i and j are made of singly connected or cutting 
bonds (red bonds in the terminology of Pike and Stanley (1981)), which have the 
property that if one of these bonds is cut, i and j are no longer connected, and the 
remaining bonds are multiply connected (figure 3). 
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Figure 3. Example of a ten-bond cluster. Between sites f and I we have (a) cutting bonds 
A,, = 2 (bold lines), i b )  resistance pV = 3, (c j shortest path wtJ = 4, ( d )  average number of 
bonds among all self-avoiding walks i,, = 4, ( e )  backbone bonds p,) = 6 (full lines), and (f) 
dangling ends = 5 (broken lines). 

We note that the backbone defined here is always related to two sites. Accordingly 
the backbone of the IIC below p c  is defined as the backbone between two sites separated 
by a distance 4, in a ‘typical’ cluster of linear dimension 5, while the backbone of the 
infinite cluster above p c  is better defined as that part made of sites which are biconnec- 
ted, such that any two sites can be connected via two independent paths made of 
different bonds (Kirkpatrick 1978, Shlifer et a1 1979). 

For every configuration of bonds we define A i j  as the number of cutting bonds 
between i and j and the average over all the bond configurations denoted by (Aij). 
For p s p C ,  analogously to (l), we define a quantity L 

which is roughly the average number of cutting bonds between sites separated by a 
distance of the connectedness length 4 (figure 2(6)) or the number of cutting bonds 
in the backbone of the IIC. 

In the appendix we will show that for any lattice and dimensionality d ,  the following 
relation holds between ( A i j )  and the pair connectedness function pii : 

p dpijldp = ( A i ; ) .  (4) 

This new relation is one of the basic results of this paper. The physical meaning of 
equation (4) can be understood in the following way. Suppose one decreases the 
density of bonds by an amount dp. The consequent decrease in the pair connectedness 
function dpii is given by the fraction of bonds removed (dp)/p times the average 
number of cutting bonds between i and j .  In fact, these are the only bonds which 
will reduce the connectivity due to an infinitesimal decrease of the bond probability. 

In site percolation (4) is also valid where p is the density of occupied sites and 
(Aij) is the average number of articulation points (or red sites in the terminology of 
Pike and Stanley (1981)), which have the property that if one is removed i and j are 
no longer connected. 

If we sum both terms in (4) and divide by S = &pij  we obtain 

( 5 )  

which shows that the number of cutting bonds in the IIC becomes a critical quantity 
at p c .  The result given in equation ( 5 )  was already predicted in a previous paper 
(Coniglio 1981a, b) using a renormalisation group procedure, and confirmed by Monte 
Carlo methods for the square lattice by Pike and Stanley (1981). 

The quantity L plays an important role in the quenched dilute s-state Potts model 
near p = p c  and T = 0. In fact, it has been shown (Coniglio 1981a, b) that the crossover 

- 1  L = ( p / S )  dS/dp - E 
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exponent q5 for such a model coincides with the critical exponent describing the 
divergence of L ,  namely q5 = 1 for any lattice and d. This is in agreement with the E 

expansion (Stephen and Grest 1977, Wallace and Young 1978) and experimental 
results (Cowley et a1 1980a, b) on Ising systems. This also explains why the backbone 
model of Gefen et a1 fails to give the right crossover exponent, due to the absence 
of links in the model. The importance of the links in determining the crossover 
exponent q5 has also been pointed out by Ziman (1979). 

Finally, from the scaling form of the pair connectedness (Essam 1980) 

plJ = (1/rz-2+‘)f(rlJ/6) (6 )  

)f1(rlJ/6) (7) 

and from equation (4) follows 
d -2+q -1/ Y 

(At]) = ( l / r l J  

where fl(x) =x(df/dx)r,””(d log 6/dp) with x = r , / [ .  It is convenient to define L,, = 
( A , , ) / p I J ,  the average number of cutting bonds between i and j under the condition of 
being connected. The scaling form for L,, is 

L I J  = rfi’”f2(rI,/t), (8) 
- 1  withf2(x) = f l (x) / f  (x). From (8), putting rlJ = 6, it follows that L,, - E which is another 

way of deriving equation ( 5 ) .  However (8) is more general and will be used later in 
the limit r,J[ << 1. 

From equation (5) alone it is not possible to deduce whether the ‘blobs’ are relevant 
or not. However, using other numerical data it is easy to realise that these blobs 
cannot be neglected for low dimensions. In fact, if the blobs were not present, the 
backbone of the IIC would have been made only of a linear chain made of L steps, 
with the obvious inequality L 5 6, since the end-to-end distance 6 is smaller than any 
other path. From (5) it would have followed that v s 1 which contradicts the well 
established result v = $ in two dimensions (den Nijs 1979, Reynolds et a1 1978, 1980, 
Eschbach et a1 1981, Blote et a1 1981, Nienhuis 1982). Therefore the ‘blobs’ must 
necessarily be present in two dimensions so that L can be smaller than 6. In higher 
dimensions v < 1, therefore we apply another argument to show that the ‘blobs’ are 
relevant. 

Below p c  the total number of backbone bonds LBB on the IIC can be defined as 

where Mii) is the average number of backbone bonds between i and j .  Clearly 
LBB = L + L B  where L is the number of cutting bonds and L B  is the total number of 
bonds in the blobs. F r m  the available numerical data (see table 1) LBB-E-‘~ with 
[B > 1 for 2 s d < 6. Using the exact result L - E - ~  it follows that L B -  LBB - for 
such values of d. In other words, near the phase transition nearly all the backbone 
bonds belong to blobs and are not cutting bonds. 

So far we have studied the properties of the IIC for length scales of the order of 
5. In particular, we stress that the average number of cutting bonds L in equation 
(6) is evaluated between two connected points separated by a distance [. As p + p c  
the distance between the two points diverges. We want to consider now the case in 
which the two points on the backbone are separated by a fixed distance rii << 6 in the 
limit p + p c .  Since limp+pc (L/LBB) = 0 we expect that the number of cutting bonds 
L;B between these two points goes to zero as p + p c .  
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These results give the following picture. Suppose p < p c ,  and two points i and j 
in the same cluster, separated by a distance of the order of [, are connected by a 
quasi-one-dimensional chain of blobs and cutting bonds. If p + p c  the cluster will 
grow and the chain connecting the fixed points i and j will eventually become part 
of a blob (see also Pike and Stanley 1981). In this nonlinear process the number of 
cutting bonds between i and j is expected to go to zero with a critical exponent as 
p + p c .  To find such an exponent we consider (8) in the limit r , , / t  >> 1. In such a limit 
we expect in analogy with thermal phase transitions (Fisher and Burford 1967, Coniglio 
and Marinaro 1973) 

f ( r z J / t )  - f i J ( O )  -Ca)”-’ E +B(r,,)E +. . .. (9) 

Here a is the ‘specific heat’ exponent, and the first and second term are related 
respectively to the singular and regular part of the ‘energy’?. From (6)-(8) follows 

E - *  + B ( r z j ) .  (10) ll-*)”-’ - I J  

The singular part can be interpreted as the contribution to the average number of 
cutting bonds LEB coming from those configurations in which i and j are on the 
backbone of the IIC and goes to zero as expected, since a < 0 for all d > 1. The regular 
part B ( r I J )  may be interpreted as the contribution coming from those configurations 
in which i and j belong to small clusters or dangling ends. It would be interesting to 
verify this result by other methods. 

In conclusion, the backbone of the IIC for length scales of the order of 6 looks like 
a quasi-one-dimensional chain made of cutting bonds and blobs (figure 2 ( 6 ) ) .  The 
number of cutting bonds diverges with a critical exponent 1 in any dimension, while 
the number of bonds in the blobs diverges with an exponent larger than unity given 
by the backbone exponent lB for 2 s d < 6 .  For d 3 6 it is believed that the backbone 
can be well approximated by a Cayley tree (de Gennes 1976), therefore the blobs 
can be neglected. Consequently, LBB - L - E  -’ in agreement with numerical data 
(Gefen et a1 1981). On the other hand, for length scales much smaller than [ we have 
argued that the number of cutting bonds between backbone sites goes to zero with 
the exponent -a, and therefore right at p c  for finite length scales no cutting bonds 
are present but only blobs. However in the next section we will give a relation which 
suggests that the blobs themselves are made of internal links and blobs in a self-similar 
structure. 

3. Structure of the blobs and self similarity 

In order to obtain information on the structure of the blobs, we have generalised 
relation (4) to pairs of biconnected points. These are points which are connected via 
at least two independent paths, with no common bonds. For p s p c  only points within 
one blob have this property. The relevant relation which is proved in the appendix is 

P dp t ldp  = (A:) (11) 
where p t  is the probability that i and j are biconnected, which we call the pair 

t A different conjecture (Stauffer 1978) predicts for the singular part of (9) a behaviour proportional to 
E ’ @ .  This would imply that (10) would diverge as E + 0 for d = 2 , 3  which is hard to expect on physical 
grounds. 
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biconnectedness function, and (A;) is the average number of bonds such that if one 
is cut i and j are no longer biconnected. If the mean size of the blobs SB=Cip;  
diverges, which is the case for 2 =s d < 6, it follows for p =s pc that 

L g  = 1 ( h ;  )/Z p ;  - E -1 (12) 

where L B  is roughly the number of bonds between two points in a blob, separated 
by a distance of the order of 6, such that if one is cut the two points are no longer 
biconnected. Equation (12) suggests that also the blobs are made of chains with links 
and blobs in a self-similar structure down to length scales large compared with the 
lattice spacing a (figure 2). Note that since these ‘internal’ links belong to the blobs, 
they are not cutting bonds. While the cutting bonds scale as 6”” only for length scales 
b -6, the internal links scale as b l / “  for any length scale a << b =s[. (For a discussion 
on the internal links, see also Gefen et a1 (1981).) The self-similarity property in the 
percolating cluster has been discussed by many authors (e.g. Stanley et a1 1976, 
Mandelbrot 1977, Kirkpatrick 1979, Stauffer 1979, Gefen et a1 1981, Stanley 1982). 

i I 

4. Effective one-dimensional lengths associated with the IIC 

In the simplified ‘links and nodes’ picture, the backbone of the IIC below p c  is made 
only of a chain of L links, therefore all the quantities such as resistivity, shortest path 
length and total number of bonds coincide with L. In the modified version discussed 
here, due to the presence of the blobs, all these quantities are different from each 
other. We can associate with any of these quantities an effective one-dimensional 
length. Although we cannot predict the divergence of these lengths as we did for L, 
we can construct a hierarchy of inequalities which might be a guide in interpreting 
the numerical data, and also useful to characterise the structure of the blobs. 

Let us consider the following two-point functions expressed in scaling form for 
p < p c  (see figure 3). 

(i) Average resistance between i and j :  

( p i j )  = (l/r:-2+q-sR’y )f 3 (rijll). (13a) 

The average resistance LR between two sites separated by a distance of order of 6, 
or equivalently the resistance of the backbone of the IIC, is 

The quantities (13a) and (136) were introduced by Fisch and Harris (1978) who 
calculated the critical exponent lR, up to six dimensions, using low density series 
expansions (see also the E expansion near six dimensions of Dasgupta et a1 (1978)). 
Recently 5~ has been shown to coincide with the crossover exponent in the dilute 
n-vector model (n > 1) near p c  (Coniglio 1981a, b;  see also Gefen et a1 1981), in 
agreement with previous results which related dilute ferromagnets near T = 0 to 
random resistor networks (Kirkpatrick 1973, Stinchcombe 1979). This exponent 
seems to be larger than the corresponding exponent iR defined above p c  via the 
conductivity exponent t = (d  - 2)v + 5~ (see e.g. Straley 1977, Harris and Kirkpatrick 
1977, Fogelholm 1980). This discrepancy may be due to corrections coming from 
the fact that the blobs at the nodes (figure 2) might be more dense than in the 
asymptotic limit p + p c  (Deutscher 1981). 
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(ii) The average number of bonds in the shortest path connecting i and j 

(cLIJ )  = ( 1 / / - = + 7 - L " J V  ) f  4 ( r l J /  5 ) (14a) 

while the number of bonds L,,, in the shortest path of the backbone of the IIC is 

L m i n =  (1/S) C ( c ~ i j ) - & - ' m l n *  (146) 

This quantity has been investigated by Kirkpatrick (1978) and Whittington et a1 (1980) 
and its critical exponent for random percolation has been estimated by Pike and 
Stanley (1981). 

J 

(iii) The average number of bonds in the backbone between i and j is 

( P , )  = (1/r~-2+"-i"'")f5(rlJ/5) (15a) 

while the number of bonds L B B  in the IIC is 

L B B = ( ~ / S )  C ( P i j ) - ~ - ' " -  (156) 

The exponent rB can be related to the order parameter backbone exponent p' = vd - [B 
and has been calculated for different values of d by Kirkpatrick (1978) and for d = 2 
by Shlifer et a1 (1979). 

(iv) Finally we introduce the following quantity which is related to the statistics 
of the self-avoiding walk (SAW) on a dilute lattice: 

I 

)f&I,/5) (16a) d - 2 + 7 - i s a w l v )  
( ? t J ) =  ( l / r l J  

where is the mean number of steps in the set of the SAW between i and j in a given 
configuration of bonds. The mean number of steps L s A W  among the SAW between 
the extreme ends of the IIC is therefore given by 

An analysis of the statistics of the SAW on random lattices has been recently done by 
Chakrabarti and Kertksz (1981) and Kremer (1981) using Monte Carlo methods, and 
by Derrida (1982) with the transfer matrix approach. Kremer, on the base of his 
numerical result, suggested that a good approximation for the self-avoiding walk 
exponent vpSxw = v/fsAw on a dilute lattice at the percolation threshold might be 
given by the Flory formula 

U ~ X W  = 3 / ( d F +  2) (17) 
where d F = d  - P / v  is the fractal dimensionality of the percolating cluster at p c ,  and 
P is the order parameter percolation exponent. 

The physical meaning of LR is that the resistance of the backbone of the IIC is 
equivalent to a one-dimensional chain made of L R  steps. The same interpretation 
may be given to the other quantities Lmin, LSAW, L B B .  Therefore the backbone of 
the IIC can be associated with a one-dimensional chain like in the 'nodes and links' 
picture, provided that different lengths are used in correspondence of different quan- 
tities. 

Since h i j s p i i s ~ i i s ? i j s P i i  as figure 3 clearly shows, from (9), ( l l ) ,  (13), (16) it 
follows that 

L s L R  S Lmin s L S A W s  L B B ,  (18) 

6 L m i n  L S A W  L B B ,  (19) 
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from which the following exponent inequalities are obtained: 

1 s [R s 5 m i n  (SAW s l e ,  (20) 

v s 5min SSAW 50. (21) 

If the blobs were irrelevant all the lengths in (18) would coincide with L, and all the 
exponents in (20) would be equal to 1. This is the case for d = 1 and d 3 6 ,  where 
mean field theory (without loops) is valid:. 

For 2 s d s 6, the difference of the various exponents from 1 gives a measure of 
the relevance of the blobs. In table 1 and in figure 4 we have given the estimated 
exponents as a function of the dimensionality. In d = 2 the exponents have their 
largest values. For d = 3, rR is almost 1 while the backbone exponent is is still quite 
large. This means that the blobs are still present but do not strongly influence the 
resistance. 

Finally we note that the exponents lR and lmln are very close for d = 2. This is 
due to the fact that the shortest path gives the dominant contribution to the resistance. 
We expect that the two exponents should become even closer for higher d where the 
blobs are less important. 

<R 

I I 1 0  
1 

d 

Figure 4. Critical exponents from table 1 plotted as function of d. Note that 1 s lR c lmi, < 
lsaw c le as predicted from equation (20). As is shown in the text, these exponents are 
equal to 1 if there are no ‘blobs’ in the backbone of the incipient infinite cluster. In fact 
we note here that they are equal to 1 for d = 1, where it is impossible to have blobs, take 
their maximum value at d = 2 and tend again to 1 as d approaches 6, implying that the 
influence of the ‘blobs’ decreases and vanishes at d = 6 where mean field theory (no loops) 
takes over. The lines are intended as a guide for the eye. The error bars have been 
indicated with double arrows, when larger than the size of the dots. 

5. Cluster structure above p e  

Consider a d-dimensional hypercube of linear dimension. The probability R that one 
face is connected to the opposite in the limit of large b tends to a step function (figure 
5 ) ,  and is related to the connectedness length exponent v by finite size scaling via 

+ Note that for d = 1, 6 also coincides with all the lengths and v = 1, while for d = 6 ,  Y = i. 
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Figure 5. Schematic behaviour of R :  the probability of getting across from one face to 
the opposite of a given cell of linear dimension b (Reynolds et a1 1978, 1980). From 
relation (23), p(dR/dp) = ( A )  where ( A )  is the average number of cutting bonds between 
the opposite faces, it follows that ( A )  is practically zero everywhere except in a narrow 
region Ap - b-’I” around p c  where it suddenly reaches a value - b-””. 

(Levinshtein et a1 1976, Reynolds et a1 1978, 1980, Kirkpatrick 1978) 

p dR/dpl,,,*=Ab””, (22) 
where A is a constant and p *  is a suitable value of p (usually chosen as the value for 
which dR/dp has a maximum), which scales as p *  - p c  - b-”” where p c  is the percola- 
tion threshold of the infinite system. The following relation has been proved in the 
appendix: 

p dRldP = (A L (23) 
where ( A )  is the average number of cutting bonds between the two opposite faces of 
the hypercube, such that if one is cut one face is no longer connected to the other. 

For the special case b = [ ( p ) ,  from (22) and (23) follows 

(A)=&-pcl-’. (24) 
Relations (23) and (24) have also been proved independently by Kertesz (private 
communication). For p > p c  in the above relation ( A )  can be interpreted as the number 
of cutting bonds between two nodes in the infinite cluster separated by a distance of 
the order of t (figure 6). Therefore, using the same argument as for p <pc ,  it follows 
from (24) that the backbone of the infinite cluster can be considered as a superlattice 
made of nodes separated by a distance 5, connected by links and blobs, with the same 
self-similar structure as the IIC below p c  (figure 2). 

Figure 6.  A cell of size b - 6 is shown, along with the backbone of a spanning cluster 
(full lines). If p > p c ,  can be considered part of the backbone of the infinite cluster (broken 
lines). 
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Assuming the ‘links and nodes’ model, Skal and Shklovskii (1975) argued and de 
Gennes (1976) postulated that the number of links connecting the nodes diverges as 
(24). 

Information about the structure of the dangling ends of the infinite cluster can be 
obtained from equation (4) for p > p c :  

p dpijldp = (Aij) .  (25) 

Note that p i j  is the probability that i and j are connected via a finite or infinite cluster. 
Taking the limit Ii - j l +  CO and dividing both terms in (25) by P 2  = limli-jl+oo pii ,  we have 

(26) 

P is the percolation order parameter and (Am)/P2 is the average number of cutting 
bonds between two infinitely distant sites supposedly connected by the infinite cluster. 
Consequently these are bonds in the dangling ends of the infinite cluster. Equation 
(26) suggests that the dangling ends of the infinite cluster also have a structure similar 
to the IIC below p c .  

-1 ( 2 p l P )  dPldp = (A,)/P2 - E . 

6. Role of the cutting bonds in the percolation transition 

Although the cutting bonds are a minority compared with the bonds in the blobs, 
nevertheless they play an essential role in driving the percolation transition. If we 
look at the behaviour of the probability R of ‘getting across’ a large cell (figure 5 ) ,  
we note that in both the percolative and non-percolative phase dRldp is practically 
zero and from (23) no cutting bonds are present. Only in the transition regime does 
R change abruptly and a cascade of cutting bonds is produced. This suggests that the 
transition to the percolative regime occurs by means of a coalescence of clusters via 
cutting bonds. 

We also note from (22) and (23) that 

where (A)max  is the average number of cutting bonds calculated at p = p *  where it 
assumes its maximum value. The above relation provides a direct geometrical interpre- 
tation of the connectedness length exponent v and a direct method for its computation 
using the large cell renormalisation group mostly developed by Reynolds et a1 (1978, 
1980). 

7. A percolation model in which the ‘blobs’ can be inhibited 

In this section we want to discuss a percolation model in which the blobs can be 
reduced in size by changing a parameter and study the effect on the critical exponents. 
In this model two types of bonds, A and B, may be active. The A bonds with 
concentration cA have a restricted valence 2, namely no more than two A bonds can 
come out of the same vertex. These bonds have the property of forming long chains. 
The B bonds with concentration cB have no restrictions as in the usual percolation 
problem. Clusters are made of sites connected by either type of bond. Two limiting 
cases are well known: CA # 0, CB = 0 describes a system of SAW chains; cA = 0, cB # 0 
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give the usual bond percolation. The general case C A  # 0, C g  # 0 has been studied by 
Coniglio and Daoud (1979) and more recently by Ord and Whittington (1982) in the 
context of polymer gelation and vulcanisation. Here the interest in this model stems 
from the fact that the presence of the A bonds inhibits the formation of the blobs. 

In the renormalisation group approach of Coniglio and Daoud (1979), it is found 
that the critical exponents are the same as for the usual random bond percolation 
problem, except for special values of the parameters where crossover to SAW exponents 
is observed. This SAW regime is characterised by long chains made of A bonds and 
few B bonds acting as crosslinks among the chains. This result can be understood in 
the context of the ‘nodes, links and blobs’ picture. As the concentration of the B 
bonds increases, the size of the blobs is reduced until they disappear completely and 
a crossover to the nodes and links picture occurs, in which nodes separated by a 
distance 6 are connected by SAW chains. 

Recently, experiments have been done on gels obtained from a solution of mono- 
and bisacrylamide (Gupta and Bansil 1981). The monoacrylamide is a two-valence 
monomer that tends to form chains (like the A bond), while the bisacrylamide acts 
as a crosslink (like the B bond). The experiment showed that by increasing the relative 
concentration of mono- with respect to the bisacrylamide the gel changed from an 
opalescent phase to a clear phase. This could be explained by a transition from a 
nodes, links and blobs structure (the blobs being responsible for the opalescence) to  
a nodes and links structure. 

8. Conclusion 

In conclusion, we have derived exact relations in percolation theory (see equations 
(4), (3, ( lo) ,  (23) and (26)) which have allowed us to describe quantitatively the 
structure of clusters near the percolation threshold. Our analysis shows that both 
links and blobs (Stanley 1977) play an important role in the description of the backbone 
of the IIC, strongly supporting the nodes, links and blobs picture. In fact if the blobs 
were neglected, as in the nodes and links picture, from the exact result (4) it would 
have followed that v G 1 for any dimension d,  contrary to the ‘exact’ result v = $ for 
d = 2. Moreover, an entire set of critical exponents would have been equal to 1,  
contrary to numerical data (see table 1). On the other hand, from equations (5) and 
(11) it follows that for all d the links cannot be neglected as in the Sierpinski gasket 
backbone model of Gefen et a1 (1981). Therefore one should try to generalise this 
model to include links. Although the average number of links is much smaller than 
the bonds in the blobs for 2 c d s 6, which is the reason why they are difficult to see 
in a computer experiment, they play an important role in driving the percolation 
transition (see e.g. figure 5). Moreover, they determine the value of the crossover 
exponent, which is equal to 1 in the quenched dilute Ising model and more in general 
in the quenched dilute s-state Potts model at the percolation threshold. Finally, they 
also determine the value of the connectedness length exponent v (equation (27)). 

It is useful to compare the behaviour of the different types of bonds in a volume 
of size b at p c :  

(i) (total number of bonds) - b ; 
(ii) (number of bonds in the IIC) - (number of dangling bonds) = LD - bd-”“ ; 
(iii) (number of backbone bonds) - (number of bonds in the blobs) Z L g B  - bd-P”u  ; 
(iv) (number of cutting bonds)=L - 6 ” ”  = b d - ( l - u ” ” .  



3842 A Coniglio 

Acknowledgments 

I would like to thank F Family, T Garrel, W Klein, S Redner, H E Stanley and D 
Stauffer for many useful conversations. I also would like to acknowledge the Center 
for Polymer Studies and the Department of Physics at Boston University for their 
continuous and pleasant hospitality. 

Appendix 

In order to derive equations (4), (11) and (23) consider the following bond-dilute 
percolation problem on a general lattice. Suppose that we have two kinds of bonds, 
A and B. Distribute at random the A bonds with occupation probability p A  and the 
B bonds with occupation probability pB. The B bonds are allowed to fall on top of 
the A bonds. Consider active a link which is occupied by both an A and a B bond. 
The probability p for such a link to be active is given by 

P = PBPA. (-41) 
Therefore if pcJ ( pB) is the pair connectedness function for the usual percolation problem 
relative to the B bonds only, the pair connectedness function for this bond-dilute 
percolation problem is given by pI,(pBpA). This bond-dilute percolation can also be 
obtained from the quenched or annealed Q-state Potts model in the limit Q + 1 
(Yeomans and Stinchcombe 1980, Coniglio 1981a, b). We calculate the pair con- 
nectedness function P:(PBPA) explicitly first in a finite volume A and then take the 
thermodynamic limit p t I ( p ~ p ~ )  = limz.+a3 p ;  (pBpA). For convenience in what follows 
we will omit the superscript A: 

P I I ( P B P A ) = C  Ti , (PA;  c)nt / (pB;  c) (A21 
C 

where Tl,(pA; C) is the probability that the configuration C of A bonds in which I 

and j are connected occurs. J l l I ( p ~ ;  C) is the probability that i and j are connected 
by B bonds in the sublattice made of active A bonds in the configuration C. The sum 
is over all configurations C containing i and j .  We calculate now the probability that 
i and j are not connected by B bonds, I?,, ( p B ;  C) = 1 --& ( p B ;  C), to the first order 
in q B  = 1 - p B ,  

(A31 fiij ( P B ;  c) = A t A B  + o(qi 1, 
where A,, is the number of cutting bonds between i and j in the configuration C and 
O ( q i )  are higher-order terms in qB. The linear term in qB is explained because there 
are exactly A,, configurations such that i and j are not connected with only one B 
bond missing. From (A2) and (A3) we have 

Taking the derivative of both terms with respect to PB calculated at pB = 1, we have 

P dpiildp = (A i j )  ('45) 

where p = p A .  This relation has been obtained for a finite system. If we take the 
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thermodynamic limit it is valid also for an infinite system. In this case p,, is the 
probability that i and j are connected via a finite or infinite cluster. 

This relation is a particular case of the following general relation valid for any 
system either finite or infinite in any dimension d :  

P d p c d d p  = ( A c D )  (‘46) 

where C and D are given sets of points, ~ C D  is the probability that at least one point 
in C is connected to at least one point in D and ( A c D )  is the average number of 
cutting bonds between C and D such that if one is cut C and D are no longer connected. 

The proof of relation (A6) follows the same lines as before provided that i and j 
are substituted by the sets C and D. Relations ( A 9  and (A6) are also valid for 
continuum percolation and directed percolation. In the case of site percolation p is 
the density of occupied sites and ( A c D )  is the average number of sites such that if one 
is removed C and D are no longer connected. 

Relations (A5) and (A6) are trivially extended to the set of biconnected points 
(see equation (11)). 

A particular case of equation (A6) is 

P dRldp = 0 )  (A71 
where R is the probability that in a hypercube of linear dimension b one face is 
connected to the opposite one, and ( A )  is the average number of cutting bonds such 
that if one is cut the two faces are not connected. 

Finally we give another relation which can be proved in the same way as equation 
(A5): 

P dp !,?ldp = (A if’ ) - ( C L  ? ) (A81 
where pi,? is the probability that i and j are connected via a finite cluster, (A:;)) is the 
average number of cutting bonds between i and j in the finite clusters and (pep) is 
the average number of bonds such that if one is cut i and j are both disconnected 
from the infinite cluster. 
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